Neue planare π -Systeme, II¹⁾

Zur Darstellung und Struktur von Tetrakis(phenylethinyl)ethen

Henning Hopf*^a, Martin Kreutzer^a und Peter G. Jones^b

Institut für Organische Chemie der Technischen Universität Braunschweig^a, Hagenring 30, W-3300 Braunschweig

Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig^b, Hagenring 30, W-3300 Braunschweig

Eingegangen am 7. Februar 1991

Key Words: Polyacetylenes / Cross conjugation / Alkenes, tetraethynyl / π -Systems, planar

New Planar π -Systems, II¹⁾. – On the Preparation and Structure of Tetrakis(phenylethynyl)ethene

The preparation of tetrakis(phenylethynyl)ethene (1b) has been repeated. Among various routes to this highly unsaturated cross-conjugated π -system, the dimerization of bromide

Unter den hochungesättigten Kohlenwasserstoffen stellen Tetraethinylethen (TEE, 1a) und seine Derivate eine bislang kaum bearbeitete Substanzklasse dar. Einzelne Vertreter wie Tetrakis(phenylethinyl)- $(1b)^{2}$, Tetrakis(*tert*-butylethinyl)- $(1c)^{3,4}$, Tetrakis(trimethylsilylethinyl)- $(1d)^{3,4}$ und Tetrakis(1-propinyl)ethen $(1e)^{3}$ sind zwar bekannt, doch steht die Synthese des Stammsystems 1a, des formalen Allkohlenstoff-Analogons von Tetracyanethen, ebenso aus¹² wie die Darstellung von Derivaten mit reaktiven funktionellen Gruppen oder auch nur eines Vertreters mit einer "freien" und damit substituier- und funktionalisierbaren Ethinyl-Funktion.

Wegen der großen Häufung von π -Elektronen auf kleinstem Raum bieten sich die doppelt kreuzkonjugierten Moleküle 1 zum einen als neuartige Liganden für charge-transfer- und metallorganische Komplexverbindungen an. Andererseits könnte die große Elektronendichte dieser Moleküle auch durch Additions- und Isomerisierungsreaktionen "abgebaut" werden. So enthalten die Derivate 1 beispielsweise die in jüngster Zeit in mehreren Naturstoffen⁵⁾ aufgefundene 3-Hexen-1,5-diin-Untereinheit, die durch die sogenannte Bergman-Cyclisierung zu aromatisieren vermag⁶. Durch ihre besondere π -Elektronenstruktur bieten die Tetraethinylethene die Voraussetzung für eine "doppelte Bergman-Cyclisierung", mit deren Hilfe kondensierte aromatische Ringsysteme erhältlich sein sollten. Tetraethinylethene mit nicht substituierter Dreifachbindung sollten sich durch die in der Acetylen-Chemie ja überaus häufig genutz2 via the carbene 3 is the most simple one. Full spectroscopic data for 1b are reported for the first time, as is its X-ray structural analysis at -95° C.

ten oxidativen C-C-Verknüpfungen in komplexere Molekülstrukturen einbauen lassen.

Es ist anzunehmen, daß es sich bei **1a** um eine hochreaktive und schwer handhabbare Verbindung handeln wird¹²⁾. Aus diesem Grunde haben auch wir uns entschlossen, zunächst Derivate dieses Stammkörpers herzustellen und zu untersuchen. Da insbesondere keine Strukturparameter von Tetraethinylethenen bekannt und die spektroskopischen Daten lückenhaft sind, wurde zunächst die Synthese von **1b** wiederholt. Über gleichzeitig Ethinyl- und Cyan-Gruppentragende "Hybridtypen" aus **1a** und Tetracyanethen haben wir vor kurzem an anderer Stelle berichtet¹⁾.

Darstellung von Tetrakis(phenylethinyl)ethen (1b)

Der Kohlenwasserstoff **1b** wurde erstmalig im Jahre 1969 durch Hori und Mitarbeiter hergestellt, denen damit auch die erste Synthese eines Tetraethinylethens überhaupt gelang²). Die japanischen Autoren erzeugten hierzu durch α -Eliminierung von 3-Brom-1,5-diphenyl-1,4-pentadiin (**2**) mit Kalium-*tert*-butylat in THF/1-Methyl-2-pyrrolidon das Carben **3**, das unter den Versuchsbedingungen zu den drei kristallinen C₃₄H₂₀-Kohlenwasserstoffen **1b**, **6** und **7** dimerisiert. Die Charakterisierung der Produkte erfolgte im wesentlichen durch ¹H-NMR-Spektroskopie bei 60 MHz und Hydrier-Experimente sowie Vergleich der erhaltenen Produkte mit den authentischen Verbindungen.

In einer später von Hauptmann gefundenen Methode zur Darstellung von Tetraethinylethenen^{3,4}, die die Bildung von Isomerengemischen vermeidet, wird 2 durch Reaktion mit Kaliumiodid in Aceton zunächst zu der Dihydro-Verbindung 5 dimerisiert⁷, die sich anschließend durch sukzessive Behandlung mit *n*-Butyllithium und überschüssigem *tert*-Butylhypochlorit zu dem gewünschten 1b oxidieren läßt. Ein zweites, gleichfalls von Hauptmann stammendes Verfahren unterwirft die Lithium-Salze der Tosylhydrazone von Diethinylketonen der Bamford-Stevens-Reaktion und

ist im Falle der tert-Butyl- (Darstellung von 1c) und Trimethylsilyl-Derivate (1d) erfolgreich, versagt jedoch überraschenderweise bei der Darstellung von 1b aus 4⁴). Da sich seit der Erstbeschreibung der obigen Methoden die Mc-Murry-Kupplung zu einem leistungsfähigen und universellen Verfahren gerade von persubstituierten Alkenen entwikkelt hat⁸⁾, haben wir 4 dieser reduktiven Dimerisierung unterworfen. Das Resultat war enttäuschend: Zwar wurde 1b isomerenrein erhalten, aber die Aufarbeitung war langwierig und die Ausbeute mit nur ca. 2% so schlecht, daß auf Optimierungsversuche verzichtet wurde. Völlig erfolglos verlief in unseren Händen die Verknüpfung von Tetraiodethen (8) mit überschüssigem Phenylethinylkupfer (9), eine Reaktion, die bereits vor den erwähnten Horischen Experimenten durchgeführt worden war und 2b angeblich in akzeptablen Ausbeuten (40%) geliefert hatte⁹. Dieses Resultat war bereits früher angezweifelt und vorgeschlagen worden², daß im Verlaufe dieser Kupplungsreaktion tatsächlich Diphenylbutadiin (10) gebildet wird. Unsere Experimente bestätigen diese Vermutung; einziges isolierbares Produkt war 10, das durch Vergleich seiner Spektren mit den Angaben der Literatur²⁾ identifiziert wurde. Trotz der gleichzeitigen Bildung der isomeren Kohlenwasserstoffe 6 und 7 halten wir deshalb die von 2 ausgehende, über das Carben 3 verlaufende Dimerisierung für den derzeit besten Weg zu 1b, zumal die Gesamtausbeute der Reaktion auf 73% gesteigert werden konnte (bei einer Isomerenverteilung von 1b:6:7 = 17:60:23). Durch Säulenchromatographie und Umkristallisation lassen sich die drei Kohlenwasserstoffe in analysenreiner Form erhalten. Ihre ergänzten und auf den heutigen Stand gebrachten spektroskopischen Daten findet man im Versuchsteil.

Röntgenstrukturanalyse von Tetrakis(phenylethinyl)ethen (1b)

Ein für die Röntgenstrukturanalyse geeigneter Kristall von 1b wurde durch Kristallisation aus Cyclohexan erhalten. Wie Abb. 1 zeigt, besteht die asymmetrische Einheit aus zwei halben Molekülen, die jeweils über ein Symmetriezentrum ergänzt werden.

In beiden Molekülen ist die zentrale, aus zehn Kohlenstoff Atomen bestehende Tetraethinylethen-Einheit planar; die mittleren Abweichungen sind < 1 pm. Die relative Anordnung der Phenyl-Substituenten ist jedoch unterschiedlich.

Abb. 1. Das Molekül von 1b im Kristall; Ellipsoide entsprechen 50proz. Aufenthaltswahrscheinlichkeit; nur die asymmetrische Einheit ist numeriert

In Molekül 2 (zentrale Bindung an C4) ist das gesamte Molekül nahezu planar, die Diederwinkel der Phenyl-Ringe bezüglich der Zentraleinheit betragen 3 und 6°. In Molekül 1 (zentrale Bindung an C3) betragen die entsprechenden Winkel hingegen 31 bzw. 167°.

Chemisch äquivalente Bindungslängen und -winkel weisen sehr kleine Streuungen auf. Die Mittelwerte der Bindungslängen entsprechen in den meisten Fällen den Standardwerten [in eckigen Klammern] von Allen et al.¹⁰: Ph-C 143.4 [Ar-C(sp) 143.4], C \equiv C 119.8 [118.9 für ArC \equiv C], C(sp)-C(sp²) 142.6 [143.1, 142.7 in TCNQ] pm. Lediglich die zentralen C=C-Bindungen sind mit 137.3, 137.6 pm ein wenig verlängert, jedoch vergleichbar mit den entsprechenden Werten in TCNQ [endocyclisch 137.2, semicyclisch 139.2 pm].

Abb. 2 zeigt die Molekülpackung. Der kürzeste nichtbindende Abstand zwischen Kohlenstoff-Atomen beträgt 343 pm für C6(1 - x, 1 - y, 1 - z)····C30. Die Bindungslängen und -winkel von 1b sind in Tab. 1 zusammengefaßt.

Über das chemische Verhalten von 1b und weiteren Tetraethinylethenen sowie von Aza-Derivaten dieser Substanzen (Ersatz von Ethinyl-Funktionen durch Nitril-Gruppen, s.o.) werden wir demnächst berichten.

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit, der BASF Aktiengesellschaft für Chemikalienspenden und Herrn Prof. Dr. L. Ernst für die Hilfe bei der Interpretation einiger Kernresonanzspektren.

C(1) - C(2)	119.9	(3)	C(1)-C(11)	143.4	(2)
C(2) - C(3)	142.4	(2)	C(3) - C(7)	142.6	$(\tilde{2})$
C(3)-C(3i)	137.8	(3)	C(7)-C(8)	120.2	(2)
C(8) - C(23)	143.6	(2)	C(11) - C(12)	140.1	(2)
C(11) - C(16)	139.1	(2)	C(12) - C(13)	138.0	$(\overline{3})$
C(13)-C(14)	137.6	(2)	C(14) - C(15)	137.5	(3)
C(15) - C(16)	138.2	(3)	C(23) - C(24)	138.5	(3)
C(23)-C(28)	138.7	(3)	C(24)-C(25)	139.6	(3)
C(25) - C(26)	137.8	(4)	C(26) - C(27)	135.7	(4)
C(27)-C(28)	137.9	(3)	C(4) - C(5)	142.8	(2)
C(4) - C(9)	142.5	(2)	C(4) - C(4ii)	137.3	$(\overline{3})$
c(5)-c(6)	119.8	(2)	C(6) - C(17)	143.4	(2)
C(9) - C(10)	119.5	(2)	C(10) - C(29)	143.2	(2)
C(17) - C(18)	138.6	(2)	C(17) - C(22)	138.8	$(\overline{3})$
C(18)-C(19)	138.2	(3)	C(19) - C(20)	137.3	(3)
C(20) - C(21)	137.3	(3)	C(21) - C(22)	137.9	(3)
c(29)-c(30)	139.6	(2)	C(29) - C(34)	139.3	(2)
C(30) - C(31)	137.9	(3)	C(31) - C(32)	137.8	$(\overline{2})$
C(32) - C(33)	137.9	(3)	C(33) - C(34)	138.0	$(\overline{3})$
C(2) - C(1) - C(1)	L)	178.1(2)	C(1) - C(2) - C(3))	177.7(2)
C(2) - C(3) - C(7)	, ,	118.2(2)	C(2) - C(3) - C(3)	í)	121.0(2)
C(7)-C(3)-C(3	L)	120.7(2)	C(3)-C(7)-C(8)́	179.0(2)
C(7) - C(8) - C(2)	s)	179.6(2)	C(1) - C(11) - C(12)	120,2(1)
C(1)-C(11)-C(1	(6)	121.1(2)	C(12)-C(11)-C	(16)	118.7(2)
C(11)-C(12)-C	(13)	120.0(2)	C(12)-C(13)-C	(14)	120.5(2)
C(13)-C(14)-C	15)	120.1(2)	C(14)-C(15)-C	(16)	120.1(2)
C(11)-C(16)-C	15)	120.5(2)	C(8) - C(23) - C(24)	120.6(2)
C(8)-C(23)-C(2	28)	120.3(2)	C(24)-C(23)-C	(28)	119.1(2)
C(23)-C(24)-C	(25)	119.8(2)	c(24)-c(25)-C	(26)	119.7(2)
C(25)-C(26)-C	(27)	120.5(2)	C(26)-C(27)-C	(28)	120.3(2)
C(23)-C(28)-C	(27)	120.5(2)	C(5)-C(4)-C(9)	116.8(1)
C(5)-C(4)-C(4:	li)	121.7(2)	C(9)-C(4)-C(4	11)	121.5(2)
C(4)-C(5)-C(6))	176.0(2)	C(5)-C(6)-C(1	7)	177.1(2)
C(4)-C(9)-C(10))	178.3(2)	C(9)-C(10)-C(29)	178.5(2)
C(6)-C(17)-C(2	L8)	119.4(2)	C(6)-C(17)-C(22)	121.8(1)
C(18)-C(17)-C	(22)	118.8(2)	C(17)-C(18)-C	(19)	120.1(2)
C(18)-C(19)-C	(20)	120.6(2)	C(19)-C(20)-C	(21)	119.7(2)
C(20)-C(21)-C	(22)	120.3(2)	C(17)-C(22)-C	(21)	120.5(2)
C(10)-C(29)-C	(30)	120.5(1)	C(10)-C(29)-C	(34)	120.6(2)
C(30)-C(29)-C	(34)	118.9(2)	C(29)-C(30)-C	(31)	120.1(1)
C(30)-C(31)-C	(32)	120.7(2)	C(31)-C(32)-C	(33)	119.6(2)
C(32)-C(33)-C	(34)	120.6(2)	C(29)-C(34)-C	(33)	120.2(2)

Symmetrieoperatoren (i): 1 - x, -y, -z; (ii): -x, 1 - y, 1 - z.

Experimenteller Teil

Schmp.: Kofler-Heiztischmikroskop. – IR: Perkin-Elmer 1420. – UV: Beckman UV 5230. – ¹H- und ¹³C-NMR: Bruker AM 400 bei 400.1 und 100.6 MHz in CDCl₃; int. Standards: TMS bzw. CDCl₃ (δ^{13} C = 77.05). Die mit einem * versehenen ¹³C-NMR-Signale sind austauschbar. – MS: Finnigan 8430.

Abb. 2. Stereographisches Packungsdiagramm von 1b mit Blickrichtung entlang der a-Achse

Tetrakis(phenylethinyl)ethen (1b) aus 3-Brom-1,5-diphenyl-1,4pentadiin (2): 2.10 g (9.0 mmol) 1,5-Diphenyl-1,4-pentadiin-3-ol¹¹ werden in 10 ml absol. Ether gelöst und unter Eiskühlung mit 0.91 g (7.5 mmol) Phosphortribromid versetzt. Nach 6stdg. Rühren bei 0°C wird mit 40 ml ges. Natriumhydrogencarbonat-Lösung hydrolysiert, mehrfach mit Ether extrahiert und die vereinigten org. Phasen mit Magnesiumsulfat getrocknet. Nach Entfernen des Lösungsmittels im Rotationsverdampfer (hierbei sollte die Badtemperatur 30°C nicht überschreiten) werden 2.40 g (90%) 2 erhalten, das ungereinigt weiterverarbeitet werden kann. Hierzu wird das Bromid in ca. 20 ml einer 4:1-Mischung aus THF und 1-Methyl-2-pyrrolidon gelöst und bei 0°C mit einer Lösung von 1.00 g (8.9 mmol) Kalium-tertbutylat in dem gleichen Lösungsmittel versetzt (sofortige Dunkelfärbung). Man rührt ca. 12 h, zersetzt mit verd. HCl und extrahiert mit Ether. Die getrocknete Ether-Phase (MgSO₄) wird vom Lösungsmittel befreit, der Rückstand in Dichlormethan aufgenommen und das Reaktionsgemisch durch Filtrieren über eine kurze Kieselgelsäule vorgereinigt: 1.38 g (73%) Isomerengemisch, das durch Säulenchromatographie an neutralem Aluminiumoxid (Aktivitätsstufe III) mit CCl₄/Cyclohexan (1:1) getrennt werden kann. Abgesehen von Mischfraktionen wurden erhalten:

Fraktion 1: 253 mg (15%) (E)-1,5,6,10-Tetraphenyl-5-decen-1,3,7,9tetrain (7). – IR (KBr): $\tilde{v} = 3080 \text{ cm}^{-1}$ (w), 2203 (m), 1600 (w), 1490 (m), 1442 (m), 756 (vs), 690 (vs). – UV (CH₃CN): λ_{max} (lg ε) = 201 nm (4.92), 237 (4.67, sh), 252 (4.73), 256 (4.74), 268 (4.56, sh), 281 (4.47, sh), 377 (4.62), 391 (4.58, sh). – ¹H-NMR (400 MHz): $\delta = 7.26 - 7.52$ (m, 16H, arom. H), 7.82 - 7.88 (m, 4H, 13-H, 17-H). – ¹³C-NMR (100 MHz): $\delta = 74.18, 81.80$ (s, C-2*, C-3*), 84.95, 86.27 (s, C-1*, C-4*), 121.62 (s, C-6), 128.29, 128.46, 128.96, 129.44, 132.49 (d, arom. C), 130.65 (s, C-5), 137.94 (s, C-12). – MS (70 eV): m/z (%) = 428 (100) [M⁺], 350 (43), 326 (10), 212 (20).

Fraktion 2: 639 mg (38%) 1,4,8-Triphenyl-3-(phenylethinyl)-3-octen-1,5,7-triin (6). – IR (KBr): $\tilde{v} = 3056 \text{ cm}^{-1}$ (w), 2925 (w), 2187 (m), 1596 (w), 1492 (m), 1439 (m), 1156 (w), 919 (w), 757 (vs), 690 (vs). – UV (CH₃CN): λ_{max} (lg ε) = 199 nm (4.92), 231 (4.56), 249 (4.59), 258 (4.58), 274 (4.52), 288 (4.55), 295 (4.52, sh), 325 (4.23), 391 (4.52), 400 (4.52). – ¹H-NMR (400 MHz): δ = 7.30–7.46 (m, 14 H, arom. H), 7.52–7.56 (m, 2H, arom. H), 7.63–7.68 (m, 2H, arom. H). – ¹³C-NMR (100 MHz): δ = 74.32, 82.09, 85.48, 86.53, 87.47, 88.83, 95.56, 98.31, 112.22, 121.79, 122.61, 122.83 (alle s), 128.07, 128.42, 128.44, 128.54, 128.95, 129.05, 129.23, 129.50, 131.67, 132.15, 132.56 (d, arom. C), 134.65 (s), 136.05 (s). – MS (70 eV): *m/z* (%) = 428 (100) [M⁺], 350 (15), 226 (11), 213 (9), 202 (8).

Fraktion 3: 198 mg (11%) Tetrakis(phenylethinyl)ethen (1b). – IR (KBr): $\tilde{v} = 2201 \text{ cm}^{-1}$ (m), 2176 (m), 1490 (s), 1440 (m), 756 (vs), 689 (s). – UV (CH₃CN): λ_{max} (lg ε) = 199 nm (4.90), 232 (4.50), 247 (4.37, sh), 336 (4.27, sh), 351 (4.31, sh), 363 (4.38), 404 (4.55). – ¹H-NMR (400 MHz): $\delta = 7.32 - 7.39$ (m, 12H, 6-H, 7-H, 8-H), 7.54 - 7.60 (m, 8H, 5-H, 9-H). – ¹³C-NMR (100 MHz): $\delta = 87.52$ (s, C-3*), 99.01 (s, C-2*), 117.30 (s, C-1), 122.70 (s, C-4), 128.48 (d, C-6, C-8), 129.22 (d, C-7), 131.84 (d, C-5, C-9). – MS (70 eV): m/z (%) = 428 (100) [M⁺], 350 (8), 226 (12), 213 (10), 202 (9).

Tetrakis(phenylethinyl)ethen (1b) durch McMurry-Kupplung: Eine Probe von 0.50 g (2.17 mmol) 1,5-Diphenyl-1,4-pentadiin-3on (4)^{1,3)} wird während 5 d in Gegenwart von 0.81 g (2.40 mmol) TiCl₄ und 0.31 g (4.80 mmol) Zink⁸⁾ in THF zum Rückfluß erhitzt. Nach Hydrolyse und Isolierung der organischen Reaktionsprodukte durch Ether-Extraktion werden aus dem Rückstand durch "zweifache Säulenchromatographie an Kieselgel und dann an Aluminiumoxid 0.01 g (2.2%) 1b isoliert und durch seine spektroskopischen Daten charakterisiert.

Röntgenstrukturanalyse von 1b: Kristalldaten: $C_{34}H_{20}$; $M_r =$ 428.7; triklin; $P\overline{1}$; a = 546.5(2), b = 1450.0(5), c = 1605.7(6) pm; $\alpha = 79.74(3), \beta = 80.74(2), \gamma = 80.21(3)^{\circ}; V = 1.2225 \text{ nm}^3; Z =$ 2; $D_X = 1.164 \text{ Mg m}^{-3}$; F(000) = 448; $\lambda(\text{Mo-}K_{\alpha}) = 71.069 \text{ pm}$; $\mu = 0.06 \text{ mm}^{-1}$; $T = -95 \,^{\circ}\text{C}$. – Datensammlung und -verfeinerung: Ein gelbes Prisma (ca. 0.65 \times 0.4 \times 0.25 mm) wurde auf einen Glasfaden mit Inertöl montiert und in den Kaltgasstrom des Diffraktometers (Siemens R3 mit LT-2-Tieftemperaturzusatz) gebracht. Mit monochromatisierter Mo-Ka-Strahlung wurden bis $2\Theta_{max} = 50^{\circ}$ 7793 Intensitäten gemessen, von denen 4298 unabhängig waren ($R_{int} = 0.020$), und 2986 mit $F > 4\sigma(F)$ für alle Berechnungen verwendet wurden (Programmsystem "Siemens SHELXTL PLUS"). Gitterkonstanten wurden aus Diffraktometerwinkeln von 50 Reflexen im 2 Θ -Bereich 20-23° verfeinert. -Strukturlösung und -verfeinerung: Die Struktur wurde mit Direkten Methoden gelöst und anisotrop verfeinert; R = 0.038, wR = 0.041 $[w = \sigma^{-2}(F) + 0.0002 \cdot F^2]$. Eine Extinktionskorrektur wurde durchgeführt, wobei $F_{\text{corr.}} = F[1 + 0.002 \cdot xF^2/\sin 2\Theta]^{-0.25}$; der verfeinerte Wert von x betrug 0.0049(4). 308 Parameter; S = 1.6; max. $\Delta/\sigma = 0.001$; max $\Delta \varrho = 0.19 \times 10^{-6} e \text{ pm}^{-3}$. Atomkoordinaten und äquivalente isotrope Thermalparameter sind in Tab. 2 zusammengestellt¹¹⁾.

Tab. 2. Atomkoordinaten (× 10⁴) und äquivalente isotrope Thermalparameter [pm²] von 1b

	x	у	Z	V(eq)
C(1)	8112(3)	1457(1)	239(1)	371(6)
C(2)	6816(3)	855(1)	292(1)	364(6)
C(3)	5191(3)	167(1)	357(1)	345(6)
0(7)	3943(3)	-160(1)	1180(1)	381(6)
C(8)	2924(3)	-438(1)	1878(1)	410(6)
C(11)	9610(3)	2199(1)	157(1)	348(6)
C(12)	9001(3)	2874(1)	711(1)	437(6)
C(13)	10427(4)	3593(1)	623(1)	492(7)
C(14)	12452(3)	3654(1)	-5(1)	474(7)
C(15)	13070(3)	2997(1)	-554(1)	462(7)
C(16)	11662(3)	2272(1)	-475(1)	417(6)
C(23)	1705(3)	-776(1)	2711(1)	441(6)
C(24)	-225(4)	-1308(1)	2801(1)	620(8)
C(25)	-1356(4)	-1648(2)	3616(2)	814(11)
C(26)	-562(5)	-1439(2)	4325(2)	869(11)
C(27)	1307(5)	-907(2)	4237(1)	786(10)
C(28)	2466(4)	-580(1)	3436(1)	566(8)
C(4)	1017(3)	4658(1)	5065(1)	330(6)
C(5)	1874(3)	3972(1)	4506(1)	355(6)
C(6)	2735(3)	3393(1)	4051(1)	381(6)
C(9)	2383(3)	4605(1)	5760(1)	355(6)
C(10)	3569(3)	4540(1)	6337(1)	376(6)
C(17)	3882(3)	2693(1)	3524(1)	357(6)
C(18)	6132(3)	2145(1)	3698(1)	497(7)
C(19)	7259(3)	1464(1)	3200(1)	544(7)
C(20)	6179(4)	1328(1)	2524(1)	493(7)
C(21)	3962(4)	1874(1)	2342(1)	509(7)
C(22)	2812(3)	2551(1)	2838(1)	452(7)
C(29)	5001(3)	4487(1)	7021(1)	349(6)
C(30)	4365(3)	5143(1)	7589(1)	393(6)
C(31)	5804(3)	5106(1)	8228(1)	443(7)
C(32)	7864(3)	4421(1)	8320(1)	451(7)
C(33)	8501(3)	3770(1)	7764(1)	463(7)
C(34)	7086(3)	3796(1)	7119(1)	419(6)

CAS-Registry-Nummern

1b: 17531-26-9 / 2: 27871-98-3 / 2 (OH statt Br): 15814-32-1 / 4: 15814-30-9 / 6: 133399-93-6 / 7: 26391-61-7

¹⁾ H. Hopf, M. Kreutzer, Angew.Chem. **102** (1990) 425; Angew. Chem. Int. Ed. Engl. **29** (1990) 393.

²⁾ Y. Hori, K. Noda, S. Kobayashi, H. Taniguchi, *Tetrahedron Lett.* 1969, 3563.

³⁾ H. Hauptmann, Angew. Chem. **87** (1975) 490; Angew. Chem. Int. Ed. Engl. **14** (1975) 498.

⁴⁾ H. Hauptmann, Tetrahedron 32 (1976) 1293.

- ^{5) 5a)} J. Golik, G. Dubay, G. Gronewold, H. Kawaguchi, M. Ko-nishi, B. Krishnan, H. Ohkuma, K. Saitoh, T. W. Doyle, J. Am. Chem. Soc. 109 (1987) 3462. ^{5b)} M. D. Lee, T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Siegel, G. O. Morton, W. J. McGahren, D. B. Borders, J. Am. Chem. Soc. 109 (1987) 3466. McGanren, D. B. Borders, J. Am. Chem. Soc. 105 (1961) 5400.
 ⁶⁾ R. R. Jones, R. G. Bergman, J. Am. Chem. Soc. 94 (1972) 660.
 ⁷⁾ H. Hauptmann, Tetrahedron Lett. 1974, 3587.
 ⁸⁾ D. Lenoir, Synthesis 1977, 553.
 ⁸⁾ D. Lenoir, C. P. Marsch, I. C. Tatlaw, J. Chem. Soc.

- ⁹⁾ J. Burdon, P. L. Coe, C. R. Marsch, J. C. Tatlow, J. Chem. Soc., Chem. Comm. 1967, 1259.
- ¹⁰⁾ F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
- ¹¹⁾ Weitere Einzelheiten zur Röntgenstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissen-schaftlich-technische Information mbH, 7514 Eggenstein-Leopoldshafen 2 unter Angabe der Hinterlegungsnummer CSD-55303, der Autorennamen und des Zeitschriftenzitats angefor-
- ¹²⁾ Anmerkung während der Korrektur (7. April 1991): Wie wir durch Privatmitteilung von Herrn Prof. Dr. F. Diederich (UCLA) erfahren haben, ist die Synthese von 1a in seinem Arbeitskreis vor kurzem gelungen: Y. Rubin, C. B. Knobler, F. Diederich, Angew. Chem., im Druck; Angew. Chem. Int. Ed. Engl., im Druck.

[76/91]